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A measure of centrality based on modularity matrix
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Abstract

In this paper, a kind of measure of structural centrality for networks, called modularity centrality, is introduced. This centrality index
is based on the eigenvector belonging to the largest magnitude eigenvalue of modularity matrix. The measure is illustrated and compared
with the standard centrality measures using a classic dataset. The statistical distribution of modularity centrality is investigated by con-
sidering large computer generated graphs and two networks from the real world.
� 2008 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.
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1. Introduction

Centrality measures serve to quantify that in a network
some nodes are more important (central) than others [1].
The idea of centrality was firstly introduced in the context
of social systems, where a relation was assumed between
the location of an individual in the network and its influ-
ence and/or power in group processes [2,3]. Various cen-
trality measures have been proposed over the years to
quantify the importance of an individual in a social net-
work [3]. And the issue of structural centrality has attracted
the attention of physicists [4,5], who have extended its
applications to the realm of biological [6], technological
[7] and geographical networks [1,8].

The standard centrality measures can be divided into two
classes: those based on the idea that the centrality of a node in
a network is related to its distance to the other nodes, and
those based on the idea that central nodes stand between oth-
ers [3]. Degree [9] and closeness [10] are examples of measures
of this first kind, while shortest-path [11] or flow [12]
betweenness is the measure of the second kind [13].

Recently, Latora and Marchiori proposed a new class of
centrality measures, the so-called delta centralities [13].
This class of centralities measure the contribution of a node
to a network cohesiveness property, from the observed var-
iation in such property when the node is deleted. The infor-
mation centrality [13], based on the concept of efficient
propagation of information over the network [14,15], is
the special case of delta centralities.

In Ref. [16], Newman studied the problem of detecting the
community structure of complex networks. He introduced the
modularity matrix of networks and proposed a spectra
method that used the eigenspectrum of matrix to find the com-
munity structure. The modularity matrix contains the struc-
tural information of networks [17], so we can use the values
of eigenvector adhered to nodes to measure the importance
of nodes in the whole network. In this paper, based on the first
leading eigenvectors of modularity matrix, we propose a new
centrality measure, the so-called modularity centrality.

2. Classic measures of centrality

The following is a list of the classic measures in social
networks, a newly proposed information centrality by
Latora is listed as well. The definitions are given in terms
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of an undirected, unweighted graph G, of N nodes and K

edges. The graph is described by an N � N adjacency
matrix A, whose entry Aij is equal to 1 when there is an
edge between i and j and 0 otherwise.

The degree centrality (CD) is based on the idea that
important nodes are those with the largest number of ties
to other nodes in the graph. The degree centrality of a node
i is defined as [2]:

CD
i ¼

ki

N � 1
¼
P

j2GAij

N � 1
ð1Þ

where ki is the degree of node i.
The closeness centrality (CC) measures to an extent a

node i is near to all the other nodes along the shortest paths
and is defined as [3]:

CC
i ¼ Lið Þ�1 ¼ N � 1P

j2G;j 6¼idij
ð2Þ

where dij is the shortest path length between i and j, and Li

is the average distance from i to all the other nodes.
The betweenness centrality ðCBÞ is based on the idea that

node is central if it lies between many other nodes, in the
sense that it is traversed by many of the shortest paths con-
necting couples of nodes. The betweenness centrality of
node i is [11]:

CB
i ¼

1

ðN � 1ÞðN � 2Þ
X

j2G;j 6¼i

X
k 6¼i;k 6¼j

njkðiÞ
njk

ð3Þ

where njk is the number of the shortest path between j and
k, and njkðiÞ is the number of the shortest path between j

and k that contains node i.
The information centrality ðCIÞ relates the node centrality

to the ability of the network to respond to the deactivation
of the node. The information centrality of node i is defined
as the relative drop in the network efficiency EðGÞ caused
by the removal from G of the edges incident in i [13]:

CI
i ¼

DE
E
¼ EðGÞ � E G0ð Þ

EðGÞ ð4Þ

where the efficiency of a graph G is defined as:

EðGÞ ¼ 1

NðN � 1Þ
X

i;j2G;i6¼j

1

dij
ð5Þ

in which G0 is the graph with N nodes and K � ki edges ob-
tained by removing the ki edges linked with node i from the
original graph G. An advantage of using the efficiency to
measure the performance of a graph is that EðGÞ is finite
even for disconnected graphs.

3. Modularity centrality

The various kinds of matrices of networks, such as adja-
cency matrix, Laplacian matrix, normalized matrix, often
contain some useful information about the structure of
the network. For finding the efficient method of detecting
the community structure, Newman introduces the modu-

larity function and modularity matrix to avoid the influ-
ences of random factors so as to obtain the better
divisions of the community structure.

The modularity function Q is the number of edges fall-
ing within communities minus the expected number in an
equivalent network with edges placed at random. This
quantity is high for good community divisions and low
for poor ones [16]. Consider the partition of a network G

into p non-overlapping communities, Q can be expressed as

Q ¼ 1

2m
Trace XTMX

� �
ð6Þ

where the assignment matrix X ¼ ðxihÞ; xih ¼ 1 if vertex i

belongs to community h and xih ¼ 0 otherwise. M is the
so-called modularity matrix and in vector notation it can
be written as M ¼ A� kkT

2m , where k is the n-element vector
whose elements are degrees ki of the nodes. We can see that
M is the real symmetric matrix with elements
Mij ¼ Aij � kikj

2m . For any network, due to

X
j

Mij ¼
X

j

Aij � ki

X
j

kj

2m
¼ ki � ki ¼ 0 ð7Þ

holds, it implies that the vector ð1; 1; . . . ; 1Þ is an eigenvec-
tor of the modularity matrix with eigenvalue zero. The
eigenvalues of the modularity matrix are not all of one sign
and the matrix usually has both positive and negative
eigenvalues.

Writing M ¼ UDUT, where U ¼ ðu1ju2j . . .Þ is the
matrix of eigenvectors of M and D is the diagonal matrix
of eigenvalues Dii ¼ bi, Eq. (6) can be transformed to

Q ¼
Xn

j¼1

Xp

k¼1

bj uT
j xk

� �
ð8Þ

From (8) we can see that the eigenvalues and eigenvectors
of the modularity matrix are closely tied to the value of Q,
thus closely tied to the community structure of the net-
work. In fact, every eigenvalue and the corresponding
eigenvector, either positive or negative, give their contribu-
tions to the value of Q. In particular, the largest positive
eigenvalue with its eigenvector has the most positive contri-
bution to the modularity, and the most negative eigenvalue
with its eigenvector make substantial negative contribution
to the modularity. In the meantime, those vertices, as a
consequence of their situation within the network, have
the power to make substantial positive or negative contri-
butions to the overall modularity of the network. This con-
tribution is embodied by the magnitudes of elements
corresponding to the vertices. In Ref. [16], Newman
pointed out that vertices with the greatest capacity for
making positive contributions to the modularity have the
greatest capacity to make negative contributions. So the
magnitudes of the elements of the eigenvector correspond-
ing to the largest magnitude eigenvalue of the modularity
matrix give a measure of the ‘‘strength” with which vertices
belong to their assigned communities. Thus, these magni-
tudes define a kind of centrality index that quantifies how
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central vertices are in communities. We call this centrality
measure modularity centrality and use the norm CM to rep-
resent it. We define it to be equal to the magnitudes of the
elements of the eigenvector belonging to the largest magni-
tude eigenvalue. That is, let b ¼ maxðjbijÞ; i ¼ 1; 2; . . . ; n,
the vector u is the eigenvector belonging to b, and the mod-
ularity centrality score of node i, is the magnitude of the ith
elements of vector u, i.e., juij.

3.1. An example

The modularity centrality agrees with the standard mea-
sures on assignment of extremes. For instance, it gives the
maximum importance to the central node of a star and
equal importance to the nodes of a complete graph. How-
ever, the agreement breaks down between these extremes,
such as the bridge node connecting the two main parts of
a network. We show here a simple example to illustrate
this.

Consider two graphs G1 and G2 with no cycles (Fig. 1).
The six centrality scores for G1 are shown in Table 1, where
nodes are ordered in descending order of CM. Although all
the six measures attribute the highest centrality to node 2,
there are some differences worth mentioning.

We can see that, CM has the same results as CI for both
ranks and resolution. As better shown in Table 2, CM, as
well as CI, assigns the top score in G1 to node 2, the second

score to nodes 1, 3, the third score to nodes 7, 12, and is
also able to disentangle nodes 9, 10, 11 (fourth score) from
the remaining ones. The only other measure that operates
such a distinction is CC which, on the other hand, assigns
the second score to nodes 7, 12 and the third score to nodes
1, 3 inverting to the result of CM and CI. Neither CD nor CB

has the resolution of CM, CI and CC. In fact, CD assigns the
top score to the three nodes 1, 2, 3, all having five neigh-
bors, and the second score to nodes 7, 12, both with two
neighbors; while CB assigns the top score to node 2 and
the second score to nodes 1, 3, 7, 12. Both CD and CB do
not distinguish nodes 9, 10, 11 from the remaining ones.

The node ranking obtained in G2 is reported in Table 3.
In graph G1, nodes 2, 1 and 3 have the same number of
neighbors; in G2, node 2 has less neighbors than nodes 1
and 3. This affects the node ranking based on CD and
CB, while it does not change the rankings based on CI

and CC.
We can show that CM has the same resolution as the CI,

CC. In addition, CM assigns the most important nodes to
node 1 and node 3 rather than node 2 which is assigned
by CI. In the meantime, the 4th rank and 5th rank
exchange the order for CM and CI.

3.2. Large networks

For large networks, the analysis emphasis of the central-
ity is now shifted from the role of central nodes and their
identification to the distribution of centrality values
through all nodes [8].

So in this section we investigate how the modularity cen-
trality is statistically distributed among the nodes of large
networks. In order to reduce the statistical fluctuations,
we have computed the cumulative distribution P ðCMÞ
defined in terms of the (differential) distribution pðCMÞ as:

P CM
� �

¼
Z þ1

CM

pðX ÞdX ¼
Z þ1

CM

NðX Þ
N

dX ð9Þ

Fig. 1. The graph G1 with N ¼ 16 nodes, and the graph G2, obtained from
G1 by disconnecting node 10 from the rest of the graph.

Table 1
Centrality values for the nodes of G1

Node CM CI CD CC CB

2 0.5493 0.5904 0.3333 0.4545 0.7143
3 0.4970 0.4439 0.3333 0.3488 0.4762
1 0.4970 0.4439 0.3333 0.3488 0.4762

12 0.2113 0.3893 0.1333 0.4054 0.4762
7 0.2113 0.3893 0.1333 0.4054 0.4762
9 0.1140 0.1160 0.0667 0.3191 0.0000

10 0.1140 0.1160 0.0667 0.3191 0.0000
11 0.1140 0.1160 0.0667 0.3191 0.0000
13 0.0973 0.1064 0.0667 0.2631 0.0000
14 0.0973 0.1064 0.0667 0.2631 0.0000
15 0.0973 0.1064 0.0667 0.2631 0.0000
16 0.0973 0.1064 0.0667 0.2631 0.0000
4 0.0973 0.1064 0.0667 0.2631 0.0000
5 0.0973 0.1064 0.0667 0.2631 0.0000
6 0.0973 0.1064 0.0667 0.2631 0.0000
8 0.0973 0.1064 0.0667 0.2631 0.0000

Table 2
Centrality rankings in G1

Rank CM CI CD CC CB

1 2 2 1, 2, 3 2 2
2 1, 3 1, 3 7, 12 7, 12 1, 3, 7, 12
3 7, 12 7, 12 Others 1, 3 Others
4 9, 10, 11 9, 10, 11 9, 10, 11 9, 10, 11
5 Others Others Others Others

Table 3
Centrality rankings in G2

Rank CM CI CD CC CB

1 1, 3 2 1, 3 2 2
2 2 1, 3 2 7, 12 1, 3
3 7, 12 7, 12 7, 12 1, 3 7, 12
4 4–8, 13–16 9, 11 Others 9, 11 Others
5 Others Others Others
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where pðX ÞdX is the probability to find a node with a mod-
ularity centrality ranging in the interval ðX ;X þ dX Þ, while
NðX ÞdX is the number of nodes with a modularity central-
ity ranging in the interval ðX ;X þ dX Þ, and N is the total
number of nodes in the network.

First, we consider two kinds of artificial generated
graphs, namely, Erd}os–Rényi (ER) random graphs and
the generalized random graphs with a given degree distri-
bution. We have generated ER random graphs, which
has N ¼ 1000 nodes and the average degree hki ¼ 9:884,
and the generalized random graphs with N ¼ 1000 nodes
and a power-law degree distribution pk � k�c with expo-
nent c ¼ 3. Fig. 2 shows the cumulative distributions of
modularity centrality scores obtained in the two cases (cir-
cles). (a) is the semilog plot figure, the solid line is the expo-
nential fit to the points, while the straight line in the log–log
plot of (b) is a power law fit, P ðCMÞ � ðCMÞ�l, with an
exponent l ¼ 1:42. The latter result indicates that in a ran-
dom graph with a power-law degree distribution, the mod-
ularity centrality is also distributed as a power law. In the
case considered we have found that pðCMÞ � ðCMÞ�2:42.

We have also considered two networks from the real
world. The first network we considered is the electrical

power grid of the western United States [19]. For this net-
work, nodes represent generators, transformers and substa-
tions, and edges represent high-voltage transmission lines
between them. The degree distribution in this network is
consistent with an exponential and is thus relatively homo-
geneous. The distribution of betweenness centrality is more
skewed than that displayed by semirandom networks with
the same distribution of links, indicating that the power
grid has structures that are not captured by these models
[20]. This is demonstrated by the distribution of modularity
centrality (semi-log plot in Fig. 3(a)). The fit line is a piece-
wise linear function, which means that the distribution
function is a piecewise exponential function.

In Fig. 3(b), we report the cumulative distribution of
modularity centrality in the network of US airports in
1997 (The data are available at http://vlado.fmf.uni-lj.si/
pub/networks/default.htm). The network has N ¼ 332
nodes representing the airports and K ¼ 2126 links repre-
senting the flights. This network exhibits a broad scale
modularity distribution as the artificial network considered
in Fig. 2(b). The solid line in the log-log plot of Fig. 3(b) is
a power law fit to the empirical distribution, P ðCMÞ � C�l,
with l ¼ 1:4986.
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Fig. 2. Cumulative distribution of modularity centrality in two computer
generated networks. (a) ER random graph with N ¼ 1000 nodes and the
average degree hki ¼ 9:884; (b) generalized random graph with N ¼ 1000
nodes and a scale-free degree distribution pk � k�3. The results are
averages over an ensemble of 30 graphs. The solid line in (a) is the
exponential fit to the distribution, while in (b) is the power fit.
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Fig. 3. Cumulative distribution of modularity centrality in real world
networks. (a) The western US power transmission grid, which has
N ¼ 4941 and hki ¼ 2:67 [18]; (b) the US airport networks in 1997, which
has N ¼ 332 and K ¼ 2126 lines. The solid line in (a) is a piecewise
exponential function that fits to the distribution, while in (b) is a power fit.
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4. Conclusions

In this paper, we have introduced a new kind of central-
ity measures, the so-called modularity centrality. We have
illustrated similarities and dissimilarities with respect to
the standard measures adopted in sociometry and informa-
tion centrality presented in technological networks by con-
sidering some small networks. From the standard example,
we can find that modularity centrality has better resolution
to the key nodes. We have also investigated how the mod-
ularity centrality is statistically distributed among the
nodes of large graphs, by considering artificial generated
graphs and networks from the real world.

Now, centrality is a fundamental concept in the network
analysis, and the new centrality measures have been pro-
posed for various uses. The modularity centrality is
inspired by the study of the detection of community struc-
ture of complex networks, and the modularity centrality
would be a good measure of the actual strength of the cor-
responding community of nodes. However, it remains to be
seen, in the light of further empirical work, if and in which
cases the new measure is more appropriate than the others.
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